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Abstract. Finite field-dependent BRS (FFBRS) transformation is a generalization of ordinary
BRS transformation that can be used to connect actions in different gauge. In this work, we
develop the FFBRS transformation that connects the usual Lorentz gauges (with gauge parameter
A) with axial gauges (with gauge parameig). We suggest a possible application of this result

to rigorously obtain the prescription of thgil- ¢ type singularity.

1. Introduction

Strong, weak and electromagnetic interactions are very well described by the standard model
which is a non-Abelian gauge theory [1]. Practical calculations in non-Abelian gauge theory
require a choice of gauge and there are many choices available. Two of the gauges used
predominantly are the Lorentz-type gauges and axial-type gauges. Lorentz-type gauges (with
gauge-fixing term—(1/21)(d - A)?) have the natural advantage of simplicity of Feynman
rules, covariance and the possibility of checking the gauge independence of results by
studying the dependence an[2]. There are also no ambiguities in dealing with these
gauges when dealing with the singularities of the propagators. Naturally a large number of
practical as well as formal calculations have been done in Lorentz gauges. A disadvantage of
Lorentz gauges in non-Abelian gauge theories is, however, that they require a ghost action;
and this complicates calculations, operator product expansions [3] etc. For this reason,
another set of gauges has often found favour in calculations; namely, the axial gauges
n-A=0,n, being a set of four real numbers. These gauges have the formal advantage
that the ghost term is trivial (free) and consequently calculations are simplified considerably
in these gauges [4]. In fact, first practical calculations in quantumchromodynamics (QCD)
were done in these gauges [5]. These gauges are, however, accompanied by a lack of
explicit covariance. More importantly, they contain in their propagators singularities of the
form 1/((n - ¢)”) which need to be carefully interpreted if calculations are to be done for
Feynman diagrams involving loops.

Various prescriptions have been proposed for thig) 1g) singularity. Two of these are
the ‘principle value prescription’ (PVP) [6] and the ‘Mandelstam—Leibbrandt prescription’
(MLP) [7]. Both of these ared hocprescriptions and lead to a variety of problems. While
PVP violates the Ward—Takahashi (WT) identity to one loop ordersfor= 0 and has
several other difficulties associated with it [8], the MLP in the light cone gayge=(0)
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leads to Lorentz-non-invariant integrals or non-local counterterms [9]. A prescription has
also been derived for gauges of the typget+ 1 A3 = 0 by Landshoff and von Niewenhuizen
[10] using canonical quantization. For further attempts see [11].

We want to approach the two set of gauges differently. As calculations in Lorentz
gauges are unambiguous, a similar unambiguous procedure for axial gauges could possibly
be arrived at if one were to establish a link between the two gauges. In fact, a novel field
transformation, the ‘finite field-dependent BRS (FFBRS) transformation’, has recently been
proposed [12] with just a view to connecting generating functionals in different gauges and
has successfully been applied in a number of cases there. Our aim is to generalize the work
of [12] to establish the FFBRS transformation that connects Lorentz-type gauges to axial-
type gauges. Such a field transformation should enable one to go back and forth between
the two sets of gauges. In this work, we mainly restrict ourselves to this problem, making
comments on any applications at the end. We hope to report these applications elsewhere.

We remark that interest in connecting these sets of gauges is more than for formal
reasons alone. Discrepancies have been reported among the calculations for anomalous
dimensions of operators (which could have observable effects) in the two sets of gauges
[13]. Our FFBRS transformation, explicitly constructed (albeit complicated) connects these
sets of gauges, we believe, for the first time. We hope to exploit the transformation in this
problem in the future.

2. Summary of results on FFBRS transformations

The familiar BRS transformations for gauge theory with Faddeev—Popov effective action
(FPEA) are

8A% = (Dyuo)*SA

8¢ = —%f“ﬁycﬁcy(SA

3. A
8" = =5 (2.1)

where§A is an anticommuting infinitesimal constant. It was observed by Joglekar and
Mandal [12] thats A need not be infinitesimal, nor need it be field-independent for (2.1)
to be a symmetry of the FPEA as long as it does not depend explicitly*onThus, the
following transformations

Al (x) = A% (x) + DI P (x) O[]

() = ¢ (x) = 38/ P () (x)Og]

e o 3+ A%(x)

c(x) =c"(x) — T®[¢] (2.2)
or generically

¢:(x) = ¢; — Srsl¢i]O[¢] (2.2a)

where®[¢] is anx-independent functional of field4, ¢ andc (generically denoted by;),
are also a symmetry of the effective action and will be called ‘finite field-dependent BRS
(FFBRS) transformations’ for obvious reasons.

Transformations of the form (2.2) were used, in [12], to connect the actions of different
kinds for Yang—Mills theory. The FPEA is invariant under (2.2) but the functional measure
is not, and the Jacobian for the FFBRS transformations (in special cases dealt with in
[12]) can be expressed effectively as efpli S; then explains the difference between the
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effective actions for different formulations of gauge theories. Thus FFBRS transformations
that connect the usual FPES in linear gauges with gauge parameteto (i) the most
general BRS—anti-BRS symmetric action in linear gauges, (ii) the FPEA in quadratic gauges
and (iii) the FPEA with another distinct gauge parametewere explicitly constructed in

[12].

In this work we shall carry out this construction for connecting Lorentz-type and axial-
type gauges following the general algorithm presented in [12]. The general procedure for
constructing the FFBRS transformation of (2.2) for a given case is outlined below.

Let us denote byg;(x) the fields A, ¢ and ¢ generically. We then construct a
transformation from these td’, ¢’ and¢’ (generically denoted bg!(x)) by a continuous
interpolation. We consider the intermediate fielplgx,x) (0 < x« < 1) satisfying the
infinitesimal field-dependent BRS transformations

d¢i (-xv K)
dx

where®’[¢ (x, )] is ak-independent, but a local functional ¢f; as yet unspecified. These
can then be integrated to yield (2.2) (for certain special cas&3[@f) where we identify
¢'(x) = ¢(x,k = 1). (The relation betwee® and®’ is reproduced later in (2.9).)

The Jacobian for such transformations is

= 8ral @i (x, K)]O'[¢ (x, k)] (2.3)

DADcDc = J(k)DA(k)Dc(k)Dc(k) (2.4)

and can be replaced (within the functional integral) as

J (k) — expliSi[e(x, x)]] (2.5)
with a certainlocal Si[¢] in certain cases o®’[¢]; the condition for existence aof; is
1
[ pow| 550~ explisen + su1 = 0 26)
J de di
then,
W= [ Doexplisulell = [ Dy’ explisul] + isils']. 27)

Thus, to summarize, if a loc&’[¢] can be found and if a local actio$y[¢] can be found
such that the Jacobian for (2.3), satisfies equation (2.6), then the integrated version of
(2.3), viz (2.2), (with® related to®’) takes us fromW with FPEA S

W= / Dy expliSenlel] (2.82)

to that with net effective actioSei[¢’] + S1[¢'], viz
W= [ Dy explisuly] + isile'] (2.80)

W and W’ being numerically equal.

Now, to connect Lorentz-type gauges to axial-type gau§esthe difference between
effective actions, being known (see the next section), it is then a matter of conjedRiring
and showing that (2.6) is satisfied by the Jacobian. Oficés so obtained, the FFBRS
transformations are completely determined by (2.2) véflp] given by

explflell —1

7ol (2.9)

Bl¢] = O'[¢]
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where f[¢] is determined by the BRS variation 6f[¢]

flel = Z / * 50 ()BBstz(x) (2.10)

where the sum over goes overa, ¢, c.

(It may be remarked that the infinitesimal gauge transformation that takes onegrom
of the Lorentz gauges ‘towards’ th®y of the axial gauges can be used to guess the form
for ®, so that®’ is not entirely left to arbitrary guess work. More on this in the next
section.)

3. Construction of FFBRS transformation

In this section we carry out the programme mentioned in the last section, of constructing
FFBRS transformations that connect explicitly the Lorentz-type gauges with the axial-type
gauges.

The Lorentz-type gauges with the free gauge paranietee described by the FPEA

Sk = / d'xLL[A, ¢, ] (3.1)
with
1
L _ — LA 2 _ zapgap B
Lor="Lo— o Xa:(a A2 — M (3.2)
where
Lo=—FF F (3.3)
and
& Mypcp = 9" D P (3.4)
The axial-type gauges with the free gauge parametme described by the effective action
S _/ d'xLA[A, ¢, ] (3.5)
with
L= Lo— —Zm A2 — M (3.6)
where
M = n”D/‘;“’[A]. (3.7)
It is in the limit wherer — 0 in (3.6) that one recovers the formally ghost-free gauge
n-A*=0.

We next need to construct an FFBRS transformation connecting (3.2) and (3.6). For this, we
construct an interpolating effective Lagrangian for the mixed gauge condition; with gauge
functional

F9[A]l = (1— B)d - A* + By - A°. (3.8)
The Faddeev—Popov effective action for this gauge is

1 ~
- > Z[a — B3 - A* + Bn- AP —c[(1— )M + BM]c (3.9)
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where forg = 0, one obtainsC.; in Lorentz-type gauges and f@ = 1, one obtainsC%
in axial type-gauges.
The ansatz foP’ of the infinitesimal field-dependent BRS of equation (2.3) is obtained

by consideration of the infinitesimajauge transformation that takes one froph = 0
(Lorentz gauges) t@ = AB (a small admixture of the axial term). This is known, from
the general result, to be [2]
SAZ = ijﬂMﬂ‘)}AFV(summation-integration convention used

= DM IAB(n- AY — 0 - A7) (3.10)
and this suggests that we consider the following FFBRS transformation with

Q' = iy/ d'ye” (y)(@ - A —n - AV)(y)
Viz
S8A%(x) =iy D cP (x) / d'ye” ()@ - AY — - AV)()
8c(x) = —iy%gf“ﬁ‘scﬂ(x)cs(x) / d'yc” (y)(@ - AY —n- AV)(y)

C0-A _
8% (x) = —WT/ d"yc” (y)(@ - AY —n- AV)(y). (3.11)

(We note that the first equation of (3.11) upon replacementg@f)c, (y) — iMﬁ_Vl(x, y)
would go into (3.10) ify is identified with—AB. Such a relationship is used suggesting
the form of FFBRS transformation (3.11), which will now peovedto work.)

Equations (3.11) are written in brief as

d .
a%(% k) = [8grspi (x, K)]')’/ d'yc? (y, k)[0 - AV (y, k) —n- AV (y, k)]

= [8Brsgi (x, )] O'[p(x, ©)]. (3.12)

These define a one-parameter family of fields:, «), c(x, ¥) andc(x, k). In terms of
these we construd¥/[«]

Wik] = / Do (i) @lSetletl+Sile () ]l (3.13)
such that:
W[«] isindependent ok: Z—W =0 (3.1%)
K
Sile (), klle=0 =0 (3-1%)
w[0] = / Do (0)glSele O] (3.1%)
W] = / Do (1)elshlom), (3.14d)

In other words, the transformation (3.12) goes fro0) to ¢ (1) such thatW[0] of (3.14c)
is transformedn form into W[1] (numerically unaltered) of (34d) which involves the
axial-gauge type actiofi/.

From (3.13) and (34d), one can read

1 , 1 , N
S1lo k), k]le=1=[Salo (D] - [Skle (D] = o (8- A7 )2—5(77 CAY—IM'C +EMC.
(3.15)
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Looking at the form of (3.15) and the kind of terms that are present in the interpolating

LagrangianC™ of (3.9), we postulate the following form faf;

Silp(), k] = E1() (@ - A)? + E2(k) (- A + E3() (D - A) (- A) + Ea(K)eEMc + Es(c)eMc
(3.16)

(all fields here are functions of : A = A(x, «) etc). (314b) and (3.15) then imply the
following constraints

£0=0 i=12..5 (3.17)
1
§&(1) = o = —&2(1) &3(1) =0 §4(1) = &5(1) = 1. (3.18)

Now, we want to impose equation (2.6) on the assumed form®fdgof (3.12)) andsS; (of
(3.16)). Equation (2.6) is valid for an arbitraky(0 < « < 1). In this regard, we note that
—(1/J)(dJ/dk) dk is the Jacobian for the infinitesimal transformations of equation (3.12)
and receives a contribution from the non-local dependencég; ¢f) contained in®’. The
result is

1dJ _ - N 3 - A
STt —Iy[ d x|:c (x)(9, — nM)DMﬂcﬂ(x) + -
We also note that in evaluatingsg/d« we not only differentiate the explicit dependence of
S1 onk throughé but also the implicit dependence erthrough its dependence @n(é, «).
Condition (2.6) then reads

/ Dy expli(Sk; + Sv] x / d“x{Mc@’[a : A(zsl - %) +a- A§3:|

+1\;Ic®/|:8 : A(Eg - %) +2n- A$3i| + (@@ - A)2<Si — %)

@-AY—n- A“)]. (3.19)

+(n - A?(EY) + 9 - A% - A” (éé + %)
+EMc(E) —y) + EMc(EL + y)} =0. (3.20)

The last two terms in the integrand of (3.20) are dependent ona local fashion.
The contribution of these terms can possibly vanish by the antighost equation of motion.
This can only happen if the ratio of coefficients of the two terms is identical to the ratio of
coefficients ofcMc andcMc in Sk + S1. (Here dimensional regularization in whiéh(0)
terms can be dropped has been assumed.) This requires that

E,—y &ty

-1 &
Now, among the remaining terms ti&¢ dependent terms can (possibly) be converted into
local terms by the antighost equation of motion (if this cannot be done, they remain non-
local and cannot be cancelled). This can only work if the ®/alependent terms combine

in a certain manner, depending again on the ratio of coefficienidfaf andéMc in terms
in S4 + S1. This requires that

28] —&4/) &3 —&5/M
-1 &
s _ 25

84-1 &

(3.218)

(3.21b)

(3.21c)
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so that when (21b) and (321c) are fulfilled, the®” dependent terms get converted to local
terms of the form of the remaining term@¢ A)2, (n- A)?, 3- An - A type). We now require

that the coefficient of these terms in this combination vanish and this leads to three further
constraints

Y _v@a—8/h

- Pl 0 (3.210)
’ ]/%-3
_ ~0 3.2%
G- g (3.28)
;Y vEs—261+84/0)
E3+ 5~ o1 =0. (3.21)

Thus equations (21a—f) must be solved for the five functiors(x) (i = 1,2,...,5)

andy with the initial and final constraints (3.17) and (3.18). Any solution of this set will
constitute a desired solution to the problem. We shall seek a special solution in which the
ghost terms folny « take the form present i of (3.9), i.e.

—¢(1— B(k))Mc — ¢B(k)Mec. (3.22)
This requires thags (k) = B(k) = —&5(k), SO thatés + & = 0; hence
E,+8=0. (3.21g)

The solution of (R1a—g) is easy to obtain and has a simple form; we state the result
directly

1
f100) = [1- (- K)?]
2

Ea(k) = —%

&3(k) = k(k —1)/2

§a(k) = kK = —&5(k) (3.23)
y =1

To summarize, we have constructed a field transformatipx) — ¢/(x) by
interpolation viagi(x, ), 0 < x < 1, such that (i) we leave[¢] invariant and (i) we
take W = (0|0) of Lorentz-type gauges given by (2.7) intb(x)

W (k) = f Do (i)dSaletltinile®] — y (3.24)

such that forc = 0 we have, in the exponertt; of Lorentz-type gauges, for @ « < 1 we

have the FPEA of mixed-type gaug&¥ of equation (3.9) and far = 1 we have the FPEA

of axial-type gauges. This field transformation is given by the FFBRS transformation of
(2.2) where®[¢] is obtained via®'[¢] of equation (3.12) (withy = 1) via equation (2.9).

4. Conclusions and further directions

In conclusion, we have formally constructed a field transformation that connects Lorentz-
type to axial-type gauges. The field transformation, though involved in form, can, we
believe, be put to a number of uses. One of these, which we propose to report elsewhere,
is to obtain a rigorous prescription for thérl: ¢ singularity in the propagator for the axial
gauge. We know that the/4? singularity in Lorentz-type gauges is handled simply by
replacingg® — ¢*+ie. This effectively is done by adding a terie A% A** +iecc to Sk
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of the Lorentz-type gauges. We then propose to apply the FFBRS transformation (suitably
truncated to the present context) to thit effective action and from this obtain the implied
modification inSZ, the axial-gauge effective action. This will then enable us to know how
the (- ¢)~* singularity is to be dealt with. This rather involved calculation will be reported
separately.

Another possible application is to the resolution of the discrepancy reported in [13]

between axial and Lorentz gauges. We expect several other applications of our results.
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