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Abstract. Finite field-dependent BRS (FFBRS) transformation is a generalization of ordinary
BRS transformation that can be used to connect actions in different gauge. In this work, we
develop the FFBRS transformation that connects the usual Lorentz gauges (with gauge parameter
λ) with axial gauges (with gauge parameterλ′). We suggest a possible application of this result
to rigorously obtain the prescription of the 1/η · q type singularity.

1. Introduction

Strong, weak and electromagnetic interactions are very well described by the standard model
which is a non-Abelian gauge theory [1]. Practical calculations in non-Abelian gauge theory
require a choice of gauge and there are many choices available. Two of the gauges used
predominantly are the Lorentz-type gauges and axial-type gauges. Lorentz-type gauges (with
gauge-fixing term−(1/2λ)(∂ · A)2) have the natural advantage of simplicity of Feynman
rules, covariance and the possibility of checking the gauge independence of results by
studying the dependence onλ [2]. There are also no ambiguities in dealing with these
gauges when dealing with the singularities of the propagators. Naturally a large number of
practical as well as formal calculations have been done in Lorentz gauges. A disadvantage of
Lorentz gauges in non-Abelian gauge theories is, however, that they require a ghost action;
and this complicates calculations, operator product expansions [3] etc. For this reason,
another set of gauges has often found favour in calculations; namely, the axial gauges
η · A = 0, ηµ being a set of four real numbers. These gauges have the formal advantage
that the ghost term is trivial (free) and consequently calculations are simplified considerably
in these gauges [4]. In fact, first practical calculations in quantumchromodynamics (QCD)
were done in these gauges [5]. These gauges are, however, accompanied by a lack of
explicit covariance. More importantly, they contain in their propagators singularities of the
form 1/((η · q)p) which need to be carefully interpreted if calculations are to be done for
Feynman diagrams involving loops.

Various prescriptions have been proposed for this 1/(η ·q) singularity. Two of these are
the ‘principle value prescription’ (PVP) [6] and the ‘Mandelstam–Leibbrandt prescription’
(MLP) [7]. Both of these aread hocprescriptions and lead to a variety of problems. While
PVP violates the Ward–Takahashi (WT) identity to one loop order forη2 = 0 and has
several other difficulties associated with it [8], the MLP in the light cone gauge (η2 = 0)
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leads to Lorentz-non-invariant integrals or non-local counterterms [9]. A prescription has
also been derived for gauges of the typeA1+λA3 = 0 by Landshoff and von Niewenhuizen
[10] using canonical quantization. For further attempts see [11].

We want to approach the two set of gauges differently. As calculations in Lorentz
gauges are unambiguous, a similar unambiguous procedure for axial gauges could possibly
be arrived at if one were to establish a link between the two gauges. In fact, a novel field
transformation, the ‘finite field-dependent BRS (FFBRS) transformation’, has recently been
proposed [12] with just a view to connecting generating functionals in different gauges and
has successfully been applied in a number of cases there. Our aim is to generalize the work
of [12] to establish the FFBRS transformation that connects Lorentz-type gauges to axial-
type gauges. Such a field transformation should enable one to go back and forth between
the two sets of gauges. In this work, we mainly restrict ourselves to this problem, making
comments on any applications at the end. We hope to report these applications elsewhere.

We remark that interest in connecting these sets of gauges is more than for formal
reasons alone. Discrepancies have been reported among the calculations for anomalous
dimensions of operators (which could have observable effects) in the two sets of gauges
[13]. Our FFBRS transformation, explicitly constructed (albeit complicated) connects these
sets of gauges, we believe, for the first time. We hope to exploit the transformation in this
problem in the future.

2. Summary of results on FFBRS transformations

The familiar BRS transformations for gauge theory with Faddeev–Popov effective action
(FPEA) are

δAαµ = (Dµc)
αδ3

δcα = −g
2
f αβγ cβcγ δ3

δc̄α = −∂ · A
α

λ
δ3 (2.1)

where δ3 is an anticommuting infinitesimal constant. It was observed by Joglekar and
Mandal [12] thatδ3 need not be infinitesimal, nor need it be field-independent for (2.1)
to be a symmetry of the FPEA as long as it does not depend explicitly onxµ. Thus, the
following transformations

A′αµ (x) = Aαµ(x)+Dαβ
µ c

β(x)2[φ]

c′α(x) = cα(x)− 1
2gf

αβγ cβ(x)cγ (x)2[ϕ]

c̄′α(x) = c̄α(x)− ∂ · A
α(x)

λ
2[φ] (2.2)

or generically

φ′i (x) = φi − δBRS[φi ]2[φ] (2.2a)

where2[φ] is anx-independent functional of fieldsA, c and c̄ (generically denoted byφi),
are also a symmetry of the effective action and will be called ‘finite field-dependent BRS
(FFBRS) transformations’ for obvious reasons.

Transformations of the form (2.2) were used, in [12], to connect the actions of different
kinds for Yang–Mills theory. The FPEA is invariant under (2.2) but the functional measure
is not, and the Jacobian for the FFBRS transformations (in special cases dealt with in
[12]) can be expressed effectively as exp[iS1]; S1 then explains the difference between the
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effective actions for different formulations of gauge theories. Thus FFBRS transformations
that connect the usual FPEASeff in linear gauges with gauge parameterλ to (i) the most
general BRS–anti-BRS symmetric action in linear gauges, (ii) the FPEA in quadratic gauges
and (iii) the FPEA with another distinct gauge parameterλ′ were explicitly constructed in
[12].

In this work we shall carry out this construction for connecting Lorentz-type and axial-
type gauges following the general algorithm presented in [12]. The general procedure for
constructing the FFBRS transformation of (2.2) for a given case is outlined below.

Let us denote byφi(x) the fields A, c and c̄ generically. We then construct a
transformation from these toA′, c′ and c̄′ (generically denoted byφ′i (x)) by a continuous
interpolation. We consider the intermediate fieldsφi(x, κ) (0 6 κ 6 1) satisfying the
infinitesimal field-dependent BRS transformations

dφi(x, κ)

dκ
= δBRS[φi(x, κ)]2

′[φ(x, κ)] (2.3)

where2′[φ(x, κ)] is a κ-independent, but a local functional ofφi ; as yet unspecified. These
can then be integrated to yield (2.2) (for certain special cases of2[ϕ]) where we identify
φ′(x) = φ(x, κ = 1). (The relation between2 and2′ is reproduced later in (2.9).)

The Jacobian for such transformations is

DADcDc̄ = J (κ)DA(κ)Dc(κ)Dc̄(κ) (2.4)

and can be replaced (within the functional integral) as

J (κ)→ exp[iS1[ϕ(x, κ)]] (2.5)

with a certainlocal S1[ϕ] in certain cases of2′[ϕ]; the condition for existence ofS1 is∫
Dϕ(x)

[
1

J

dJ

dκ
− i

dS1[ϕ(x, κ)]

dκ

]
exp[i(Seff + S1)] = 0 (2.6)

then,

W =
∫
Dϕ exp[iSeff[ϕ]] =

∫
Dϕ′ exp[iSeff[ϕ

′] + iS1[ϕ′]] . (2.7)

Thus, to summarize, if a local2′[ϕ] can be found and if a local actionS1[ϕ] can be found
such that the Jacobian for (2.3),J , satisfies equation (2.6), then the integrated version of
(2.3), viz (2.2), (with2 related to2′) takes us fromW with FPEA Seff

W =
∫
Dϕ exp[iSeff[ϕ]] (2.8a)

to that with net effective actionSeff[ϕ′] + S1[ϕ′], viz

W ′ =
∫
Dϕ′ exp[iSeff[ϕ

′] + iS1[ϕ′]] (2.8b)

W andW ′ being numerically equal.
Now, to connect Lorentz-type gauges to axial-type gauges,S1, the difference between

effective actions, being known (see the next section), it is then a matter of conjecturing2′

and showing that (2.6) is satisfied by the Jacobian. Once2′ is so obtained, the FFBRS
transformations are completely determined by (2.2) with2[ϕ] given by

2[ϕ] = 2′[ϕ]
exp[f [ϕ]] − 1

f [ϕ]
(2.9)
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wheref [ϕ] is determined by the BRS variation of2[ϕ]

f [ϕ] =
∑
i

∫
d4x

δ2′[ϕ]

δϕi(x)
δBRSϕi(x) (2.10)

where the sum overi goes overA, c, c̄.
(It may be remarked that the infinitesimal gauge transformation that takes one fromSeff

of the Lorentz gauges ‘towards’ theSeff of the axial gauges can be used to guess the form
for 2′, so that2′ is not entirely left to arbitrary guess work. More on this in the next
section.)

3. Construction of FFBRS transformation

In this section we carry out the programme mentioned in the last section, of constructing
FFBRS transformations that connect explicitly the Lorentz-type gauges with the axial-type
gauges.

The Lorentz-type gauges with the free gauge parameterλ are described by the FPEA

SLeff =
∫

dnxLLeff[A, c, c̄] (3.1)

with

LLeff = L0− 1

2λ

∑
α

(∂ · Aα)2− c̄αMαβcβ (3.2)

where

L0 = − 1
4F

α
µνF

αµν (3.3)

and

c̄αMαβcβ ≡ c̄α∂µDαβ
µ c

β. (3.4)

The axial-type gauges with the free gauge parameterλ are described by the effective action

SAeff =
∫

dnxLAeff[A, c, c̄] (3.5)

with

LAeff = L0− 1

2λ

∑
α

(η · A)2− c̄αM̃αβcβ (3.6)

where

M̃αβ = ηµDαβ
µ [A]. (3.7)

It is in the limit whereλ→ 0 in (3.6) that one recovers the formally ghost-free gauge

η · Aα = 0.

We next need to construct an FFBRS transformation connecting (3.2) and (3.6). For this, we
construct an interpolating effective Lagrangian for the mixed gauge condition; with gauge
functional

Fα[A] = (1− β)∂ · Aα + βη · Aα. (3.8)

The Faddeev–Popov effective action for this gauge is

LMeff = L0− 1

2λ

∑
α

[(1− β)∂ · Aα + βη · Aα]2− c̄[(1− β)M + βM̃]c (3.9)



Finite field-dependent BRS transformation 4221

where forβ = 0, one obtainsLLeff in Lorentz-type gauges and forβ = 1, one obtainsLAeff
in axial type-gauges.

The ansatz for2′ of the infinitesimal field-dependent BRS of equation (2.3) is obtained
by consideration of the infinitesimalgauge transformation that takes one fromβ = 0
(Lorentz gauges) toβ = 1β (a small admixture of the axial term). This is known, from
the general result, to be [2]

δAαµ = Dαβ
µ M

−1
βγ 1F

γ (summation-integration convention used)

≡ Dαβ
µ M

−1
βγ 1β(η · Aγ − ∂ · Aγ ) (3.10)

and this suggests that we consider the following FFBRS transformation with

2′ = iγ
∫

dnyc̄γ (y)(∂ · Aγ − η · Aγ )(y)
viz

δAαµ(x) = iγDαβ
µ c

β(x)

∫
dnyc̄γ (y)(∂ · Aγ − η · Aγ )(y)

δcα(x) = −iγ
1

2
gf αβδcβ(x)cδ(x)

∫
dnyc̄γ (y)(∂ · Aγ − η · Aγ )(y)

δc̄α(x) = −iγ
∂ · A
λ

∫
dnyc̄γ (y)(∂ · Aγ − η · Aγ )(y). (3.11)

(We note that the first equation of (3.11) upon replacement ofcβ(x)c̄γ (y) → iM−1
βγ (x, y)

would go into (3.10) ifγ is identified with−1β. Such a relationship is used insuggesting
the form of FFBRS transformation (3.11), which will now beproved to work.)

Equations (3.11) are written in brief as

d

dκ
φi(x, κ) = [δBRSφi(x, κ)]iγ

∫
dnyc̄γ (y, κ)[∂ · Aγ (y, κ)− η · Aγ (y, κ)]

= [δBRSφi(x, κ)]2
′[ϕ(x, κ)]. (3.12)

These define a one-parameter family of fieldsA(x, κ), c(x, κ) and c̄(x, κ). In terms of
these we constructW [κ]

W [κ] ≡
∫
Dϕ(κ) ei[Seff[ϕ(κ)]+S1[ϕ(κ),κ]] (3.13)

such that:

W [κ] is independent ofκ:
dW

dκ
= 0 (3.14a)

S1[ϕ(κ), κ]|κ=0 = 0 (3.14b)

W [0] =
∫
Dϕ(0)ei[SLeff[ϕ(0)] (3.14c)

W [1] =
∫
Dϕ(1)ei[SAeff[ϕ(1)] . (3.14d)

In other words, the transformation (3.12) goes fromφ(0) to φ(1) such thatW [0] of (3.14c)
is transformedin form into W [1] (numerically unaltered) of (3.14d) which involves the
axial-gauge type actionSAeff.

From (3.13) and (3.14d), one can read

S1[ϕ(κ), κ]|κ=1= [SAeff[ϕ(1)]−[SLeff[ϕ(1)]=
1

2λ
(∂ · Aα′)2− 1

2λ
(η · Aα′)2−c̄′M̃ ′c′ + c̄′M ′c′.

(3.15)
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Looking at the form of (3.15) and the kind of terms that are present in the interpolating
LagrangianLM of (3.9), we postulate the following form forS1

S1[ϕ(κ), κ] = ξ1(κ)(∂ · A)2+ ξ2(κ)(η · A)2+ ξ3(κ)(∂ · A)(η · A)+ ξ4(κ)c̄Mc + ξ5(κ)c̄M̃c

(3.16)

(all fields here are functions ofκ : A = A(x, κ) etc). (3.14b) and (3.15) then imply the
following constraints

ξi(0) = 0 i = 1, 2, . . . ,5 (3.17)

ξ1(1) = 1

2λ
= −ξ2(1) ξ3(1) = 0 ξ4(1) = ξ5(1) = 1. (3.18)

Now, we want to impose equation (2.6) on the assumed forms for2′ (of (3.12)) andS1 (of
(3.16)). Equation (2.6) is valid for an arbitraryκ (06 κ 6 1). In this regard, we note that
−(1/J )(dJ/dκ) dκ is the Jacobian for the infinitesimal transformations of equation (3.12)
and receives a contribution from the non-local dependences ofδϕi(κ) contained in2′. The
result is

1

J

dJ

dκ
= −iγ

∫
dnx

[
c̄α(x)(∂µ − ηµ)Dαβ

µ c
β(x)+ ∂ · A

α

λ
(∂ · Aα − η · Aα)

]
. (3.19)

We also note that in evaluating dS1/dκ we not only differentiate the explicit dependence of
S1 on κ throughξ but also the implicit dependence onκ through its dependence onφi(ξ, κ).
Condition (2.6) then reads∫
Dϕ exp[i(SLeff + S1)] ×

∫
d4x

{
Mc2′

[
∂ · A

(
2ξ1− ξ4

λ

)
+ η · Aξ3

]
+M̃c2′

[
∂ · A

(
ξ3− ξ5

λ

)
+ 2η · Aξ3

]
+ (∂ · A)2

(
ξ ′1−

γ

λ

)
+(η · A)2(ξ ′2)+ ∂ · Aαη · Aα

(
ξ ′3+

γ

λ

)
+c̄Mc(ξ ′4− γ )+ c̄M̃c(ξ ′5+ γ )

}
= 0. (3.20)

The last two terms in the integrand of (3.20) are dependent onc̄ in a local fashion.
The contribution of these terms can possibly vanish by the antighost equation of motion.
This can only happen if the ratio of coefficients of the two terms is identical to the ratio of
coefficients ofc̄Mc and c̄M̃c in SLeff + S1. (Here dimensional regularization in whichδn(0)
terms can be dropped has been assumed.) This requires that

ξ ′4− γ
ξ4− 1

= ξ ′5+ γ
ξ5

. (3.21a)

Now, among the remaining terms the2′ dependent terms can (possibly) be converted into
local terms by the antighost equation of motion (if this cannot be done, they remain non-
local and cannot be cancelled). This can only work if the two2′ dependent terms combine
in a certain manner, depending again on the ratio of coefficients ofc̄Mc and c̄M̃c in terms
in SLeff + S1. This requires that

2ξ ′1− ξ4/λ

ξ4− 1
= ξ3− ξ5/λ

ξ5
(3.21b)

ξ3

ξ4− 1
= 2ξ2

ξ5
(3.21c)
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so that when (3.21b) and (3.21c) are fulfilled, the2′ dependent terms get converted to local
terms of the form of the remaining terms ((∂ ·A)2, (η ·A)2, ∂ ·Aη ·A type). We now require
that the coefficient of these terms in this combination vanish and this leads to three further
constraints

ξ ′1−
γ

λ
− γ (2ξ1− ξ4/λ)

ξ4− 1
= 0 (3.21d)

ξ ′2−
γ ξ3

ξ4− 1
= 0 (3.21e)

ξ ′3+
γ

λ
− γ (ξ3− 2ξ1+ ξ4/λ)

ξ4− 1
= 0. (3.21f)

Thus equations (3.21a–f ) must be solved for the five functionsξi(κ) (i = 1, 2, . . . ,5)
andγ with the initial and final constraints (3.17) and (3.18). Any solution of this set will
constitute a desired solution to the problem. We shall seek a special solution in which the
ghost terms forany κ take the form present inLMeff of (3.9), i.e.

−c̄(1− β(κ))Mc − c̄β(κ)M̃c. (3.22)

This requires thatξ4(κ) = β(κ) = −ξ5(κ), so thatξ4+ ξ5 = 0; hence

ξ ′4+ ξ ′5 = 0. (3.21g)

The solution of (3.21a–g) is easy to obtain and has a simple form; we state the result
directly

ξ1(κ) = 1

2λ
[1− (1− κ)2]

ξ2(κ) = − κ
2

2λ
ξ3(κ) = κ(κ − 1)/λ

ξ4(κ) = κ = −ξ5(κ) (3.23)

γ = 1.

To summarize, we have constructed a field transformationφi(x) → φ′i (x) by
interpolation viaφi(x, κ), 0 6 x 6 1, such that (i) we leaveSLeff[ϕ] invariant and (ii) we
takeW = 〈0|0〉 of Lorentz-type gauges given by (2.7) intoW(κ)

W(κ) =
∫
Dϕ(κ)eiSLeff[ϕ(κ)]+iS1[ϕ(κ)] ≡ W (3.24)

such that forκ = 0 we have, in the exponent,SLeff of Lorentz-type gauges, for 0< κ < 1 we
have the FPEA of mixed-type gaugesSMeff of equation (3.9) and forκ = 1 we have the FPEA
of axial-type gauges. This field transformation is given by the FFBRS transformation of
(2.2) where2[ϕ] is obtained via2′[ϕ] of equation (3.12) (withγ = 1) via equation (2.9).

4. Conclusions and further directions

In conclusion, we have formally constructed a field transformation that connects Lorentz-
type to axial-type gauges. The field transformation, though involved in form, can, we
believe, be put to a number of uses. One of these, which we propose to report elsewhere,
is to obtain a rigorous prescription for the 1/η · q singularity in the propagator for the axial
gauge. We know that the 1/q2 singularity in Lorentz-type gauges is handled simply by
replacingq2→ q2+ iε. This effectively is done by adding a term−iεAαµA

αµ+ iεc̄c to SLeff
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of the Lorentz-type gauges. We then propose to apply the FFBRS transformation (suitably
truncated to the present context) to thisnet effective action and from this obtain the implied
modification inSAeff, the axial-gauge effective action. This will then enable us to know how
the (η ·q)−1 singularity is to be dealt with. This rather involved calculation will be reported
separately.

Another possible application is to the resolution of the discrepancy reported in [13]
between axial and Lorentz gauges. We expect several other applications of our results.
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